# # Problem 8: # # [Euler Project #8](https://projecteuler.net/problem=8) # # # # > The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. # # > 73167176531330624919225119674426574742355349194934 # 96983520312774506326239578318016984801869478851843 # 85861560789112949495459501737958331952853208805511 # 12540698747158523863050715693290963295227443043557 # 66896648950445244523161731856403098711121722383113 # 62229893423380308135336276614282806444486645238749 # 30358907296290491560440772390713810515859307960866 # 70172427121883998797908792274921901699720888093776 # 65727333001053367881220235421809751254540594752243 # 52584907711670556013604839586446706324415722155397 # 53697817977846174064955149290862569321978468622482 # 83972241375657056057490261407972968652414535100474 # 82166370484403199890008895243450658541227588666881 # 16427171479924442928230863465674813919123162824586 # 17866458359124566529476545682848912883142607690042 # 24219022671055626321111109370544217506941658960408 # 07198403850962455444362981230987879927244284909188 # 84580156166097919133875499200524063689912560717606 # 05886116467109405077541002256983155200055935729725 # 71636269561882670428252483600823257530420752963450 # # > Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? # # --- import os import pprint import time # Typically imported for sleep function, to slow down execution in terminal. import typing import decorators # Typically imported to compute execution duration of functions. import numpy import pandas # problem statement input 1000 digit integer input_list = [int(n) for n in "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450"] # problem statement request series length series_len = 13 rows = len(input_list) - series_len columns = series_len + 1 array = numpy.array(numpy.ones((rows,columns))) # loop for each candidate for i in range(rows): # loop to fill out each candidate and store its product in the last column for j in range(series_len): array[i][j] = input_list[i+j] array[i][-1] *= array[i][j] # Cheat by using pandas to print out the maximum product and its associated series of integers. df = pandas.DataFrame(array) print(df.sort_values(by=series_len,ascending=False).head(1))