{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Problem 11:\n", "\n", "[Euler Project #11](https://projecteuler.net/problem=11)\n", "\n", "\n", "> In the 20×20 grid below, four numbers along a diagonal line have been marked in red.\n", "> \n", "> 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
\n", "> 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
\n", "> 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
\n", "> 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
\n", "> 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
\n", "> 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
\n", "> 32 98 81 28 64 23 67 10 **26** 38 40 67 59 54 70 66 18 38 64 70
\n", "> 67 26 20 68 02 62 12 20 95 **63** 94 39 63 08 40 91 66 49 94 21
\n", "> 24 55 58 05 66 73 99 26 97 17 **78** 78 96 83 14 88 34 89 63 72
\n", "> 21 36 23 09 75 00 76 44 20 45 35 **14** 00 61 33 97 34 31 33 95
\n", "> 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
\n", "> 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
\n", "> 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
\n", "> 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
\n", "> 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
\n", "> 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
\n", "> 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
\n", "> 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
\n", "> 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
\n", "> 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
\n", "> \n", "> The product of these numbers is 26 × 63 × 78 × 14 = 1788696.\n", "> \n", "> What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?\n", "\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reserved Space For Imports\n", "---" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import pprint\n", "import time # Typically imported for sleep function, to slow down execution in terminal.\n", "import typing\n", "import decorators # Typically imported to compute execution duration of functions.\n", "import math\n", "import numpy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reserved Space For Method Definition\n", "---" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def check_horizontal(table,solution):\n", " '''\n", " Args:\n", " table: list of lists representing the input table\n", " solution: a dictionary storing the product, and three tuples of cell coordinates \n", " '''\n", " # Let's scan the horizontals first.\n", " # Acceptable cells would have a root position (on the LHS) which may reside anywhere in the table,\n", " # except for the last three columns.\n", "\n", " # create a list of tuples to store cell coordinates while generating the products\n", " cells=[(0,0),(0,0),(0,0),(0,0)]\n", "\n", " # loop over row dimension\n", " for row in range(len(table)):\n", " # loop over column dimension\n", " for column in range(len(table[row])-4):\n", " # calculate product\n", " product = 1\n", " for i in range(4):\n", " product *= table[row][column+i]\n", " cells[i]=(row,column+i)\n", " #print(\"product=\",product)\n", " if product>solution['product']:\n", " solution['product']=product\n", " solution['cella']=cells[0]\n", " solution['cellb']=cells[1]\n", " solution['cellc']=cells[2]\n", " solution['celld']=cells[3]\n", " \n", " return solution" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def check_vertical(table,solution):\n", " '''\n", " Args:\n", " table: list of lists representing the input table\n", " solution: a dictionary storing the product, and three tuples of cell coordinates \n", " '''\n", " # Let's scan the verticals next.\n", " # Acceptable cells would have a root position (at the top of column) which may reside anywhere in the table,\n", " # except for the last three rows.\n", "\n", " # create a list of tuples to store cell coordinates while generating the products\n", " cells=[(0,0),(0,0),(0,0),(0,0)]\n", "\n", " # loop over row dimension\n", " count = 0\n", " for row in range(len(table)-4):\n", " # loop over column dimension\n", " for column in range(len(table[row])):\n", " # convert data type from string to int\n", " product = 1\n", " for i in range(4):\n", " product *= table[row+i][column]\n", " cells[i]=(row,column+i)\n", " #print(\"product=\",product)\n", " count+=1\n", " #print(\"count=\",count)\n", " if product>solution['product']:\n", " solution['product']=product\n", " solution['cella']=cells[0]\n", " solution['cellb']=cells[1]\n", " solution['cellc']=cells[2]\n", " solution['celld']=cells[3]\n", " \n", " return solution" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def check_upwards_diagonals(table,solution):\n", " '''\n", " Args:\n", " table: list of lists representing the input table\n", " solution: a dictionary storing the product, and three tuples of cell coordinates \n", " '''\n", " # Let's scan the upward (left to right) diagonals next.\n", " # Acceptable cells would have a root position (at the bottom-left of the diagonal) which may reside anywhere in the table,\n", " # except for the first three rows, and the last three columns.\n", "\n", " # create a list of tuples to store cell coordinates while generating the products\n", " cells=[(0,0),(0,0),(0,0),(0,0)]\n", "\n", " # loop over row dimension\n", " count = 0\n", " for row in range(len(table)-3):\n", " # loop over column dimension\n", " #print(\"row=\",row)\n", " for column in range(len(table[row])-3):\n", " # convert data type from string to int\n", " product = 1\n", " for i in range(4):\n", " product *= table[row+3-i][column+i]\n", " cells[i]=(row+3-i,column+i)\n", " #print(\"cell=[\",row+3-i,\"][\",column+i,\"]\")\n", " #print(\"product=\",product)\n", " count += 1\n", " if product>solution['product']:\n", " solution['product']=product\n", " solution['cella']=cells[0]\n", " solution['cellb']=cells[1]\n", " solution['cellc']=cells[2]\n", " solution['celld']=cells[3]\n", " \n", " return solution" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def check_downwards_diagonals(table,solution):\n", " '''\n", " Args:\n", " table: list of lists representing the input table\n", " solution: a dictionary storing the product, and three tuples of cell coordinates \n", " '''\n", " # Let's scan the downward (left to right) diagonals next.\n", " # Acceptable cells would have a root position (at the top-left of the diagonal) which may reside anywhere in the table,\n", " # except for the last three rows, and the last three columns.\n", "\n", " # create a list of tuples to store cell coordinates while generating the products\n", " cells=[(0,0),(0,0),(0,0),(0,0)]\n", "\n", " # loop over row dimension\n", " count = 0\n", " for row in range(len(table)-3):\n", " # loop over column dimension\n", " #print(\"row=\",row)\n", " for column in range(len(table[row])-3):\n", " # convert data type from string to int\n", " product = 1\n", " for i in range(4):\n", " product *= table[row+i][column+i]\n", " cells[i]=(row+i,column+i)\n", " #print(\"cell=[\",row+i,\"][\",column+i,\"]\")\n", " #print(\"product=\",product)\n", " count += 1\n", " #print(\"count=\",count)\n", " if product>solution['product']:\n", " solution['product']=product\n", " solution['cella']=cells[0]\n", " solution['cellb']=cells[1]\n", " solution['cellc']=cells[2]\n", " solution['celld']=cells[3]\n", " \n", " return solution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import the data table above. Let's be lazy and use the nice multi-cursor feature of the code editor." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [] }, "outputs": [], "source": [ "\n", "table = \\\n", " [\\\n", " ['08', '02', '22', '97', '38', '15', '00', '40', '00', '75', '04', '05', '07', '78', '52', '12', '50', '77', '91', '08'],\n", " ['49', '49', '99', '40', '17', '81', '18', '57', '60', '87', '17', '40', '98', '43', '69', '48', '04', '56', '62', '00'],\n", " ['81', '49', '31', '73', '55', '79', '14', '29', '93', '71', '40', '67', '53', '88', '30', '03', '49', '13', '36', '65'],\n", " ['52', '70', '95', '23', '04', '60', '11', '42', '69', '24', '68', '56', '01', '32', '56', '71', '37', '02', '36', '91'],\n", " ['22', '31', '16', '71', '51', '67', '63', '89', '41', '92', '36', '54', '22', '40', '40', '28', '66', '33', '13', '80'],\n", " ['24', '47', '32', '60', '99', '03', '45', '02', '44', '75', '33', '53', '78', '36', '84', '20', '35', '17', '12', '50'],\n", " ['32', '98', '81', '28', '64', '23', '67', '10', '26', '38', '40', '67', '59', '54', '70', '66', '18', '38', '64', '70'],\n", " ['67', '26', '20', '68', '02', '62', '12', '20', '95', '63', '94', '39', '63', '08', '40', '91', '66', '49', '94', '21'],\n", " ['24', '55', '58', '05', '66', '73', '99', '26', '97', '17', '78', '78', '96', '83', '14', '88', '34', '89', '63', '72'],\n", " ['21', '36', '23', '09', '75', '00', '76', '44', '20', '45', '35', '14', '00', '61', '33', '97', '34', '31', '33', '95'],\n", " ['78', '17', '53', '28', '22', '75', '31', '67', '15', '94', '03', '80', '04', '62', '16', '14', '09', '53', '56', '92'],\n", " ['16', '39', '05', '42', '96', '35', '31', '47', '55', '58', '88', '24', '00', '17', '54', '24', '36', '29', '85', '57'],\n", " ['86', '56', '00', '48', '35', '71', '89', '07', '05', '44', '44', '37', '44', '60', '21', '58', '51', '54', '17', '58'],\n", " ['19', '80', '81', '68', '05', '94', '47', '69', '28', '73', '92', '13', '86', '52', '17', '77', '04', '89', '55', '40'],\n", " ['04', '52', '08', '83', '97', '35', '99', '16', '07', '97', '57', '32', '16', '26', '26', '79', '33', '27', '98', '66'],\n", " ['88', '36', '68', '87', '57', '62', '20', '72', '03', '46', '33', '67', '46', '55', '12', '32', '63', '93', '53', '69'],\n", " ['04', '42', '16', '73', '38', '25', '39', '11', '24', '94', '72', '18', '08', '46', '29', '32', '40', '62', '76', '36'],\n", " ['20', '69', '36', '41', '72', '30', '23', '88', '34', '62', '99', '69', '82', '67', '59', '85', '74', '04', '36', '16'],\n", " ['20', '73', '35', '29', '78', '31', '90', '01', '74', '31', '49', '71', '48', '86', '81', '16', '23', '57', '05', '54'],\n", " ['01', '70', '54', '71', '83', '51', '54', '69', '16', '92', '33', '48', '61', '43', '52', '01', '89', '19', '67', '48']\n", " ]\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Firstly, this data input creates a list-of-lists which have cells of the ```string``` data type." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [] }, "outputs": [], "source": [ "# loop over row dimension\n", "for row in range(len(table)):\n", " # loop over column dimension\n", " for column in range(len(table[row])):\n", " # convert data type from string to int\n", " table[row][column] = int(table[row][column])\n", "\n", "# create a dictionary that stores information about the solution\n", "solution = {\n", " 'product':1,\n", " 'cella':(0,0),\n", " 'cellb':(0,0),\n", " 'cellc':(0,0),\n", " 'celld':(0,0)\n", "}\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### We know brute force will work...\n", "### Can we can scan through this list-of-lists, following the accepted pattern, and store the largest product?" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "{'product': 48477312, 'cella': (8, 10), 'cellb': (8, 11), 'cellc': (8, 12), 'celld': (8, 13)}\n{'product': 51267216, 'cella': (6, 15), 'cellb': (6, 16), 'cellc': (6, 17), 'celld': (6, 18)}\n{'product': 70600674, 'cella': (15, 3), 'cellb': (14, 4), 'cellc': (13, 5), 'celld': (12, 6)}\n{'product': 70600674, 'cella': (15, 3), 'cellb': (14, 4), 'cellc': (13, 5), 'celld': (12, 6)}\n" } ], "source": [ "solution = check_horizontal(table,solution)\n", "print(solution)\n", "\n", "solution = check_vertical(table,solution)\n", "print(solution)\n", "\n", "solution = check_upwards_diagonals(table,solution)\n", "print(solution)\n", "\n", "solution = check_downwards_diagonals(table,solution)\n", "print(solution)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }