# # Problem 13: # # [Euler Project #13](https://projecteuler.net/problem=13) # # # > Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. # # > 37107287533902102798797998220837590246510135740250 # > 46376937677490009712648124896970078050417018260538 # > 74324986199524741059474233309513058123726617309629 # > 91942213363574161572522430563301811072406154908250 # > 23067588207539346171171980310421047513778063246676 # > 89261670696623633820136378418383684178734361726757 # > 28112879812849979408065481931592621691275889832738 # > 44274228917432520321923589422876796487670272189318 # > 47451445736001306439091167216856844588711603153276 # > 70386486105843025439939619828917593665686757934951 # > 62176457141856560629502157223196586755079324193331 # > 64906352462741904929101432445813822663347944758178 # > 92575867718337217661963751590579239728245598838407 # > 58203565325359399008402633568948830189458628227828 # > 80181199384826282014278194139940567587151170094390 # > 35398664372827112653829987240784473053190104293586 # > 86515506006295864861532075273371959191420517255829 # > 71693888707715466499115593487603532921714970056938 # > 54370070576826684624621495650076471787294438377604 # > 53282654108756828443191190634694037855217779295145 # > 36123272525000296071075082563815656710885258350721 # > 45876576172410976447339110607218265236877223636045 # > 17423706905851860660448207621209813287860733969412 # > 81142660418086830619328460811191061556940512689692 # > 51934325451728388641918047049293215058642563049483 # > 62467221648435076201727918039944693004732956340691 # > 15732444386908125794514089057706229429197107928209 # > 55037687525678773091862540744969844508330393682126 # > 18336384825330154686196124348767681297534375946515 # > 80386287592878490201521685554828717201219257766954 # > 78182833757993103614740356856449095527097864797581 # > 16726320100436897842553539920931837441497806860984 # > 48403098129077791799088218795327364475675590848030 # > 87086987551392711854517078544161852424320693150332 # > 59959406895756536782107074926966537676326235447210 # > 69793950679652694742597709739166693763042633987085 # > 41052684708299085211399427365734116182760315001271 # > 65378607361501080857009149939512557028198746004375 # > 35829035317434717326932123578154982629742552737307 # > 94953759765105305946966067683156574377167401875275 # > 88902802571733229619176668713819931811048770190271 # > 25267680276078003013678680992525463401061632866526 # > 36270218540497705585629946580636237993140746255962 # > 24074486908231174977792365466257246923322810917141 # > 91430288197103288597806669760892938638285025333403 # > 34413065578016127815921815005561868836468420090470 # > 23053081172816430487623791969842487255036638784583 # > 11487696932154902810424020138335124462181441773470 # > 63783299490636259666498587618221225225512486764533 # > 67720186971698544312419572409913959008952310058822 # > 95548255300263520781532296796249481641953868218774 # > 76085327132285723110424803456124867697064507995236 # > 37774242535411291684276865538926205024910326572967 # > 23701913275725675285653248258265463092207058596522 # > 29798860272258331913126375147341994889534765745501 # > 18495701454879288984856827726077713721403798879715 # > 38298203783031473527721580348144513491373226651381 # > 34829543829199918180278916522431027392251122869539 # > 40957953066405232632538044100059654939159879593635 # > 29746152185502371307642255121183693803580388584903 # > 41698116222072977186158236678424689157993532961922 # > 62467957194401269043877107275048102390895523597457 # > 23189706772547915061505504953922979530901129967519 # > 86188088225875314529584099251203829009407770775672 # > 11306739708304724483816533873502340845647058077308 # > 82959174767140363198008187129011875491310547126581 # > 97623331044818386269515456334926366572897563400500 # > 42846280183517070527831839425882145521227251250327 # > 55121603546981200581762165212827652751691296897789 # > 32238195734329339946437501907836945765883352399886 # > 75506164965184775180738168837861091527357929701337 # > 62177842752192623401942399639168044983993173312731 # > 32924185707147349566916674687634660915035914677504 # > 99518671430235219628894890102423325116913619626622 # > 73267460800591547471830798392868535206946944540724 # > 76841822524674417161514036427982273348055556214818 # > 97142617910342598647204516893989422179826088076852 # > 87783646182799346313767754307809363333018982642090 # > 10848802521674670883215120185883543223812876952786 # > 71329612474782464538636993009049310363619763878039 # > 62184073572399794223406235393808339651327408011116 # > 66627891981488087797941876876144230030984490851411 # > 60661826293682836764744779239180335110989069790714 # > 85786944089552990653640447425576083659976645795096 # > 66024396409905389607120198219976047599490197230297 # > 64913982680032973156037120041377903785566085089252 # > 16730939319872750275468906903707539413042652315011 # > 94809377245048795150954100921645863754710598436791 # > 78639167021187492431995700641917969777599028300699 # > 15368713711936614952811305876380278410754449733078 # > 40789923115535562561142322423255033685442488917353 # > 44889911501440648020369068063960672322193204149535 # > 41503128880339536053299340368006977710650566631954 # > 81234880673210146739058568557934581403627822703280 # > 82616570773948327592232845941706525094512325230608 # > 22918802058777319719839450180888072429661980811197 # > 77158542502016545090413245809786882778948721859617 # > 72107838435069186155435662884062257473692284509516 # > 20849603980134001723930671666823555245252804609722 # > 53503534226472524250874054075591789781264330331690 # # # --- import os import pprint import time # Typically imported for sleep function, to slow down execution in terminal. import typing import decorators # Typically imported to compute execution duration of functions. import math import numpy # ### Import the data table above. Let's be lazy and use the nice multi-cursor feature of the code editor. numbers = [ '37107287533902102798797998220837590246510135740250', '46376937677490009712648124896970078050417018260538', '74324986199524741059474233309513058123726617309629', '91942213363574161572522430563301811072406154908250', '23067588207539346171171980310421047513778063246676', '89261670696623633820136378418383684178734361726757', '28112879812849979408065481931592621691275889832738', '44274228917432520321923589422876796487670272189318', '47451445736001306439091167216856844588711603153276', '70386486105843025439939619828917593665686757934951', '62176457141856560629502157223196586755079324193331', '64906352462741904929101432445813822663347944758178', '92575867718337217661963751590579239728245598838407', '58203565325359399008402633568948830189458628227828', '80181199384826282014278194139940567587151170094390', '35398664372827112653829987240784473053190104293586', '86515506006295864861532075273371959191420517255829', '71693888707715466499115593487603532921714970056938', '54370070576826684624621495650076471787294438377604', '53282654108756828443191190634694037855217779295145', '36123272525000296071075082563815656710885258350721', '45876576172410976447339110607218265236877223636045', '17423706905851860660448207621209813287860733969412', '81142660418086830619328460811191061556940512689692', '51934325451728388641918047049293215058642563049483', '62467221648435076201727918039944693004732956340691', '15732444386908125794514089057706229429197107928209', '55037687525678773091862540744969844508330393682126', '18336384825330154686196124348767681297534375946515', '80386287592878490201521685554828717201219257766954', '78182833757993103614740356856449095527097864797581', '16726320100436897842553539920931837441497806860984', '48403098129077791799088218795327364475675590848030', '87086987551392711854517078544161852424320693150332', '59959406895756536782107074926966537676326235447210', '69793950679652694742597709739166693763042633987085', '41052684708299085211399427365734116182760315001271', '65378607361501080857009149939512557028198746004375', '35829035317434717326932123578154982629742552737307', '94953759765105305946966067683156574377167401875275', '88902802571733229619176668713819931811048770190271', '25267680276078003013678680992525463401061632866526', '36270218540497705585629946580636237993140746255962', '24074486908231174977792365466257246923322810917141', '91430288197103288597806669760892938638285025333403', '34413065578016127815921815005561868836468420090470', '23053081172816430487623791969842487255036638784583', '11487696932154902810424020138335124462181441773470', '63783299490636259666498587618221225225512486764533', '67720186971698544312419572409913959008952310058822', '95548255300263520781532296796249481641953868218774', '76085327132285723110424803456124867697064507995236', '37774242535411291684276865538926205024910326572967', '23701913275725675285653248258265463092207058596522', '29798860272258331913126375147341994889534765745501', '18495701454879288984856827726077713721403798879715', '38298203783031473527721580348144513491373226651381', '34829543829199918180278916522431027392251122869539', '40957953066405232632538044100059654939159879593635', '29746152185502371307642255121183693803580388584903', '41698116222072977186158236678424689157993532961922', '62467957194401269043877107275048102390895523597457', '23189706772547915061505504953922979530901129967519', '86188088225875314529584099251203829009407770775672', '11306739708304724483816533873502340845647058077308', '82959174767140363198008187129011875491310547126581', '97623331044818386269515456334926366572897563400500', '42846280183517070527831839425882145521227251250327', '55121603546981200581762165212827652751691296897789', '32238195734329339946437501907836945765883352399886', '75506164965184775180738168837861091527357929701337', '62177842752192623401942399639168044983993173312731', '32924185707147349566916674687634660915035914677504', '99518671430235219628894890102423325116913619626622', '73267460800591547471830798392868535206946944540724', '76841822524674417161514036427982273348055556214818', '97142617910342598647204516893989422179826088076852', '87783646182799346313767754307809363333018982642090', '10848802521674670883215120185883543223812876952786', '71329612474782464538636993009049310363619763878039', '62184073572399794223406235393808339651327408011116', '66627891981488087797941876876144230030984490851411', '60661826293682836764744779239180335110989069790714', '85786944089552990653640447425576083659976645795096', '66024396409905389607120198219976047599490197230297', '64913982680032973156037120041377903785566085089252', '16730939319872750275468906903707539413042652315011', '94809377245048795150954100921645863754710598436791', '78639167021187492431995700641917969777599028300699', '15368713711936614952811305876380278410754449733078', '40789923115535562561142322423255033685442488917353', '44889911501440648020369068063960672322193204149535', '41503128880339536053299340368006977710650566631954', '81234880673210146739058568557934581403627822703280', '82616570773948327592232845941706525094512325230608', '22918802058777319719839450180888072429661980811197', '77158542502016545090413245809786882778948721859617', '72107838435069186155435662884062257473692284509516', '20849603980134001723930671666823555245252804609722', '53503534226472524250874054075591789781264330331690' ] # Data Prep # - Firstly, this data input creates a list which have cells of the ```string``` data type. # - The strings should be parsed into type ```int``` at some point. # # ### Solution Approach # Can we just employ old-school arithmetic by summing the integers by columns, right to left,
# carrying over anything greater than *9* to the next column? # loop over all 50 numbers in the input to convert the string # into a list of characters, still as tpye: string for row in range(len(numbers)): numbers[row] = list(numbers[row]) # loop across the newly formed list to convert the string # character into an integer for digit in range(len(numbers[row])): numbers[row][digit] = int(numbers[row][digit]) # time to employ the "old math" by running down the columns # and summing... Dont forget to carry-over! # Let's store the sums into a list... solution_digits=[] column_carryover = 0 print(len(numbers)) print(len(numbers[0])) for places in range(len(numbers[0])): # initialize the column sum places = len(numbers[0])-places-1 #print(places) column_sum = 0 for term in range(len(numbers)): #print("row=",term,", column=",places) column_sum+=numbers[term][places] column_sum+=column_carryover print(column_sum) column_carryover=0 column_sum_element = int(list(str(column_sum))[-1]) solution_digits.append(column_sum_element) column_sum *= 0.1 column_carryover = column_sum.__trunc__() solution_digits.append(column_carryover) print(solution_digits) solution_digits.reverse() string="" for i in solution_digits[:10]: string+=str(i) print("The solution is ",string)